

ARIA Implementation:  

Moving Beyond the Basics

WebAIM.org

ARIA

ARIA expands the
vocabulary of HTML to

support what screen
readers already understand

<slider>???

ARIA Paves the Cow Paths

ARIA Paves the Cow Paths

ARIA Paves the Cow Paths

ARIA Paves the Cow Paths

ARIA Paves the Cow Paths

ARIA Paves the Cow Paths

You can only make things
more accessible by

implementing ARIA now

… if you do it correctly

Rule #1 of ARIA

Don’t use ARIA

… unless you must

Always use native, accessible
HTML first

… then use ARIA to enhance or
fill in gaps.

Rule #2 of ARIA

Do not change native semantics, unless you
really have to.

<div role=navigation>  
…

instead of
<ul role=navigation>…

Rule #3 of ARIA

All interactive ARIA controls must be usable
with the keyboard.

Rule #4 of ARIA

Do not use role="presentation" or 
 aria-hidden="true" on visible,

focusable elements.

Rule #5 of ARIA

All interactive elements must have
an accessible name.

ARIA does not change
functionality, it only changes the

presented roles/properties to
screen reader users

ARIA Design Patterns
ARIA slider design pattern:

Use device independent event handlers
or

combine mouse (e.g, onmouseover) and
keyboard (e.g, onkeypress) dependent event

handlers

Device Independence

Use Links/Buttons
Appropriately

• Links open a new page or jump to another
location within the existing page

• Buttons submit form data or perform an
in-page function

Ensure Interactive
Elements are Links or

Form Controls

or...

make non-focusable elements focusable with
tabindex

Avoid Tabindex

... unless you're sure you know what you're doing.

If the default tab order is not logical,
fix your source code order.

tabindex="1+" defines an explicit tab order

tabindex="0" allows things besides links and
form elements to receive keyboard focus.

tabindex="-1" allows things besides links
and form elements to receive programmatic

focus (by scripting, links, etc.)

Avoid this

<div onclick="submitForm()">  
Submit Search</div>

<div tabindex="0"
onclick="submitForm()">  
Submit Search</div>

Click events do not always trigger via keyboard
for things other than links or form controls...

... even with tabindex="0"

WARNING!

if(event.keyCode==13 || event.keyCode==32)
{
 doStuff();
}

Check for Enter (13) and Space (32) key presses

function a11yClick(event){
 if(event.type === 'click'){
 return true;
 }
 else if(event.type === 'keypress'){
 var code = event.charCode || event.keyCode; 
 if(code === 32){ // don't scroll the page 
 event.preventDefault();
 }
 if((code === 32) || (code === 13)){
 return true;
 }
 }
 else{
 return false;
 }
}

$('#fake-button').on('click keypress', function(event){
 if(a11yClick(event) === true){
 // do magic javascript stuff
 }
});

http://www.karlgroves.com/2014/11/24/ridiculously-easy-trick-for-keyboard-accessibility/

http://www.karlgroves.com/2014/11/24/ridiculously-easy-trick-for-keyboard-accessibility/

Just Use A Button

<div tabindex="0"
onclick="submitForm()">  
Submit Search</div>

<a href="#"
onclick="submitForm()">  

Submit Search

<a href="#" role="button"
onclick="submitForm()">  

Submit Search

<button onclick="submitForm()">  
Submit Search</button>

Just Use A Button!!!

<div role="button" tabindex="0">  
Submit Search</div>

If you don’t
Just Use A Button

you must…

… ensure the proper semantics
… make it respond to mouse click, Enter, and Space

… provide focus styling

• Allows non-focusable elements to receive
programmatic focus (by scripting, links, etc.)

• Necessary for focusing dialog boxes, error
messages, etc.

• WARNING: This removes the element from the
default tab order.

tabindex="-1"

Link or button (with  
aria-haspopup="dialog")

tabindex="-1" then set focus
to dialog (or focus a control or

element inside the dialog)

Link or button (with  
aria-haspopup="dialog")

tabindex="-1" then set focus
to dialog (or focus a control or

element inside the dialog)

Link or button (with  
aria-haspopup="dialog")

role="dialog"  
w/ aria-labelledby

Maintains keyboard
focus if modaltabindex="-1" then set focus

to dialog (or focus a control or
element inside the dialog)

Link or button (with  
aria-haspopup="dialog")

role="dialog"  
w/ aria-labelledby

Maintains keyboard
focus if modal

Closes with
ESC key

tabindex="-1" then set focus
to dialog (or focus a control or

element inside the dialog)

Link or button (with  
aria-haspopup="dialog")

role="dialog"  
w/ aria-labelledby

Maintains keyboard
focus if modal

Closes with
ESC key

Returns
focus when
dismissed

tabindex="-1" then set focus
to dialog (or focus a control or

element inside the dialog)

Link or button (with  
aria-haspopup="dialog")

role="dialog"  
w/ aria-labelledby

• Typically a very bad idea (except for dialogs, menus,
etc.)

• Foreground content
• Manage focus (account for Shift + Tab) and aria-
modal="true", or (soon?) HTML5 modal

• Background content
• aria-hidden="true" (dialog must be sibling

to the remaining content), tabindex="-1",
inert polyfill, hidden, etc.

Trapping keyboard focus

“Freak-out” Mode

When the currently focused element disappears
or is significantly modified

Avoid it or address it with
focus();

Non-modal Dialogs

• Follow the ARIA design patterns
• When possible, use HTML native input types
•<input type="date">

Carousels

Carousels

http://shouldiuseacarousel.com/

http://shouldiuseacarousel.com/

Q&A by .net magazine

http://www.netmagazine.com/news/accessibility-
expert-warns-stop-using-carousels-132875

http://shouldiuseacarousel.com/
http://shouldiuseacarousel.com/

An anti-carousel carousel featured in a carousel

Carousels

http://shouldiuseacarousel.com/

http://shouldiuseacarousel.com/

Carousel Issues

• Distracting and confusing

• Automated carousels violate WCAG 2.0 Success
Criteria 2.2.2 (Level A) - Pause, Stop, Hide

• “Freak-out mode” when carousel changes

• Difficult interaction model

• No relationship between controls and content

• Allow poor content decisions

Carousel Accessibility Solutions?

• Avoid auto-playing (optimal) or include a visible
pause button (preferably) before the carousel

• Pause carousel on mouse hover and on keyboard
focus

• Ensure focused items do not disappear, or manage
focus when they do

• Provide context and instructions for controls
• Ensure accessible content

<section> and <article>

• Each should generally begin with a heading
that describes that section

• <article> is self-contained, syndicatable

• HTML5 outlining algorithm is not
supported and is likely to be removed, so
do not rely on it. Use proper heading
levels!

ARIA Roles

• Avoid duplicating default roles  
(<button role="button">)

• ARIA roles override HTML native roles, but do NOT
change functionality.

• Be very careful! You can destroy accessibility by adding
one attribute.

<input type="checkbox" role="radio">

Landmark Roles

<div role="navigation"  
aria-label="Main navigation">

You can add aria-label to differentiate
multiple landmarks of the same type.

Generic Regions

<div role="region"  
aria-label="Filters">  

Generic regions must have a label.

ARIA States and Properties

• Elements can have more than one aria- attribute.

• ARIA states and properties should not override
HTML properties if there’s a conflict.

• Be very careful!

<input type="checkbox"
aria-checked="false">

ARIA Headings

<div role="heading" aria-level="2">

Just use <h2>!!!

ARIA Lists
<h2 id="listheader">The Spice Girls</h2>
<div role="list" aria-describedby="listheader">
 <div role="listitem">Victoria Beckham</div>
 …
 <div role="listitem">Melanie Brown</div>
</div>

Could use aria-checked=true/false/mixed to
make it interactive. Also role=switch.

ARIA ‘fieldset/legend’

<p id="question">What is the air-speed velocity of
an unladen swallow?</p>
<div role="radiogroup" aria-labelledby="question">
<input type="radio"…>
</div>

ARIA Table Caption

<h2 id="salescaption">2013 Sales Data</h2>
<p>Sales increased by …</p>
<table aria-labelledby="salescaption">...

SVG
<img src="chart.svg" alt="Sales increased
10% from 2010 to 2015">

<svg role="img" aria-labelledby="title">
 <title id="title">Sales increased 10%
from 2010 to 2015</title>

…
</svg>

<svg role="img" aria-label="Sales increased
10% from 2010 to 2015">

…
</svg>

href-less Links

Login

Treated identical to a . No keyboard interactivity.

ARIA Dialogs, Expanded, Etc.

<button aria-haspopup="true | menu | listbox
| tree | grid | dialog"></button>

<button aria-expanded="false">Details</
button>
https://webaim.org/presentations/2019/aria/disclosure.htm

<button aria-pressed="true">Toggle
Highlights</button>
https://webaim.org/presentations/2019/aria/ariapressed.htm

<a aria-current="page | step | location |
date | time | true">

https://webaim.org/presentations/2019/aria/disclosure.htm
https://webaim.org/presentations/2019/aria/ariapressed.htm

Windows Screen Reader Modes

• Reading / Virtual Cursor / Document

• Forms / Application

The current mode determines whether the screen reader
or browser handles most keyboard commands

role="application"

Triggers forms/application mode and disables
standard screen reader shortcuts

role="document" enables reading mode.

Some ARIA roles (tree, slider, grid, tabpanel, menu,
etc.) trigger forms/application mode.

You must ensure the user is aware and that the
proper keyboard interactions are implemented.

Test with AND without a Windows screen reader.

Navigation menus are not application menus!

Navigation tabs (links) are not application tabs!

Data tables are not grids!

etc.

role="presentation"

<table role="presentation">

Hides native roles of elements (and all
required descendants) from assistive

technology. Useful on layout tables, lists, etc.

Is ignored if the element is navigable 
(e.g., links and controls).

aria-hidden="true"

You can't unhide a child element.

Ignored on navigable elements.

Use ARIA attributes to control visual appearance?
[aria-hidden=true] {display:none;}

Alert Role

<div role="alert" aria-
live="assertive">Read me  

right now</div>

Element must be present in the DOM at page
load, then updated.

Also role="alertdialog"

ARIA Live Regions
•aria-live=assertive - read now
•aria-live=polite - read at a pause
•aria-live=off - read when the user encounters it. 

•aria-busy
•aria-atomic - read the entire region or only what has changed
•aria-relevant - additions, removals, text, or all
•aria-controls
• Special live regions: alert (important), status (not important),
timer (always changing), marquee(same as aria-
live="polite"), and log (updates added to the bottom)

ARIA Live Regions

Some highly dynamic content updates simply
cannot be made accessible using ARIA

Give users control over content updates

Single Page Apps

• Document structure

• Use structural elements (<main> or
role="region")

• Update page titles to reflect content/state

• Keyboard navigation

• Ensure only visible elements are navigable

• Set focus() when necessary
•$('main').attr("tabIndex", -1)  
.focus();

• Use live regions for messaging, if necessary

With great power comes great responsibility!

ARIA

Questions?

WebAIM.org

